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This paper develops a computational model for predicting the failure probability of flip chip packages fabricated using 
anisotropic conductive film (ACF). In the proposed approach, the opening failure probability is evaluated using a 
conventional Poisson function and the bridging failure probability is estimated using an enhanced box model which takes 
account of bridging along all the conductive, linear paths between adjacent pads. The opening and bridging probabilities are 
computed as a function of the volume fraction of the conductive particles within the ACF compound and are plotted in the 
form of a V-shaped curve, in which the tip value indicates the optimal volume fraction, i.e. the volume fraction which 
minimizes the overall package failure probability. The computational results indicate that the enhanced bridging model 
developed in this study provides more logical estimates of the minimum failure probability and optimal volume fraction than 
the existing bridging models presented in the literature. 
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1. Introduction 
 
Anisotropic Conductive Film (ACF), consisting of an 

insulating adhesive matrix with dispersed conductive 
particles, is used in a variety of ACF-based packaging 
techniques, including Flat Panel Displays (FPDs), Liquid 
Crystal Displays (LCDs), Tape Automated Bonding 
(TAB), Outer Lead Bonding (OLB), flex to PCB bonding 
(PCB), Chip-On-Glass (COG) and Chip-On-Film (COF). 
ACF can be a replacement for traditional soldering or wire 
bonding technology, and has the advantages of 
low-temperature assembly, high-density interconnections, 
flux-less bonding, and low fabrication cost [1-4]. The ACF 
film not only provides full electrical connectivity in the 
vertical direction (i.e. between the substrate and the IC), 
but also enhances the strength of the interconnection and 
protects the IC/Substrate assembly from accidental 
damage during handling and from environmental effects. 

Fig. 1 presents a schematic illustration of a typical 
ACF flip chip joint. Significant research has been 
performed to improve the performance and physical yield 
of flip chip packages by optimizing the ACF composition 
and the processing conditions (i.e. the temperature, 
pressure and bonding time). However, the literature 
contains relatively few proposals for predicting the 

electrical failure probability of such assemblies. In practice, 
the electrical performance of flip chip packages is directly 
related to the volume fraction of the conductive particles 
within the ACF compound. As shown in Fig. 1, the 
probability of a bridging failure (i.e. an undesirable 
conductivity in the horizontal direction) increases as the 
volume fraction increases. Conversely, the probability of 
an opening failure (i.e. a loss of electrical conductivity in 
the vertical direction) increases as the volume fraction 
decreases. Hence, in specifying an appropriate volume 
fraction, a compromise must be obtained which minimizes 
the risk of bridging failure, while simultaneously ensuring 
full electrical conductivity between the IC and the 
substrate. 

 
Fig. 1. Illustration of flip chip joint, showing insulation 

and conductibility properties. 
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In investigating the problem of opening failures, 
Williams and Whalley [5] assumed that the conductive 
particles were distributed on the pads in accordance with a 
Poisson distribution. Subsequently, Mannan et al. [6] 
proposed a box model for estimating the probability of 
shorting between neighboring pads. In this model, the 
probability of bridging is estimated as 
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where fv  is the volume fraction of the conductive 
particles, d is the distance between the pads, h is the pad 
height, l is the side length of the square pad, and r is the 
radius of the conductive particles. Significantly, the model assumes that bridging failures only occur in the pitch direction of the IC, i.e.
Eq. (1). In other words, Eq. (1) essentially provides the 
lower bound of the bridging failure probability.  

Lin et al. [7-10] modeled the electrical yield of ACF 
packages using a Poisson function to estimate the opening 
failure probability and a modified box model to predict the 
bridging probability.  Differing from the former 
publications, the new bridging model developed in this 
paper can be used to calculate the bridging probability 
with a more logical mathematical model. As shown in Fig. 
2, the opening and bridging probabilities were plotted as a 
function of the volume fraction of the conductive particles 
within the ACF compound. The resulting V-shaped curve 
not only enables the failure probability to be rapidly 
determined for any given value of the volume fraction, but 

also indicates the optimal volume fraction, i.e. the volume 
fraction which minimizes the overall package failure 
probability.   

 
Fig. 2. Illustrative V-shaped curve for ACF probability 

failure estimation. 
 
In the modified bridging model [7], the original model 

presented by Mannan et al. [6] was amended to reflect the 
possibility of shorting occurring along any of the linear 
paths through the ACF compound between adjacent 
substrates. In the proposed approach, the bridging 
probability was computed using a summation technique in 
which all of the possible intersections of events from 

nBBB ,,, 21 L (shown in the Eq. 2) were obtained and 
their respective probabilities were computed, i.e.  
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where Bi is the events about the bridging failure. 
However, in actually computing Eq. (2), only the first 

term, i.e. ( )∑
=

n

i
iBP

1

, was considered. Consequently, the 

modified box model was formulated as
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where bridgingP  is the bridging probability, fv is the 

volume fraction, *h  is the dimensionless pad height and 

is equal to [ ]rh 2 , *d  is the dimensionless distance 

between neighboring pads in the pitch direction and is 

equal to [ ]rd 2 , *l  is the dimensionless pad height and 

is equal to [ ]rl 2 , ( 1i , 2i , 1j , and 2j ) are calculation 

indices.  
 However, in developing this model, it is assumed 
that the bridging conditions over two or more conductive 
paths in the meanwhile are neglected. As a result, Eq. (2) 
tends to over-estimate the bridging failure probability. In 
other words, Eq. (2) essentially provides the upper bound 
of the bridging failure probability. 
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Accordingly, this paper attempts to improve the 
accuracy of the estimated bridging probability by 
modifying the bridging model proposed by Mannan et al. 
[6] and Lin et al.[7], and to take into account the 
occurrence of the bridging paths under a more logical 
model. 
 

2. Application of probability theory to opening  
  and bridging failure analysis  
 
2.1 Opening failure analysis using poisson function  
 
In ACF assemblies, the absence of particles on a pad 

results in an open circuit between the substrate and the IC. 
Therefore, when evaluating the electrical performance of 
such assemblies, it is essential to have some idea of the 
number of particles located on each pad. According to 
Williams and Whalley [5], the probability of there being n 
particles on a pad is given by  
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where 1μ  is the average number of particles on the pads 

in the vertical direction. 
The probability of an open circuit between the pads 

can be expressed as 
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It has been reported that in IC / substrate assemblies 
with an inter-pad spacing of 50 µm, the use of an ACF 
compound with six particles per pad ensures a stable 
contact resistance during testing at high temperatures 
(85°C) and high relative humidity (85%) [11,12]. In other 
words, a density of more than five particles per pad is 
required to prevent opening. Under these conditions, the 
Poisson function for the opening failure probability can be 
expressed as 
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2.2 Bridging analysis 
 
Fig. 3 presents a schematic illustration of an adhesive 

compound brick between two neighboring pads. An 
assumption is made that the conductive particles are 
randomly distributed within the ACF resin. If the adhesive 
compound brick is assumed to comprise a total of N cubic 
boxes and to contain a total of k particles, then the volume 
fraction of the particles within the resin is given by  
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The probability that any box is occupied, i.e. contains 
a particle, is given by 
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where N is the number of cubic elements (i.e. boxes) in the 
region between the adjacent pads, k is the number of cubic 
elements containing particles in the region between the 
adjacent pads, 2μ  is the probability of an element 
containing a particle between the adjacent pads. Clearly in 
Eq. (9), the ratio of k to N should be less than 1 and the 
volume fraction should be smaller thanπ /6. 

 

 
Fig. 3. Adhesive matrix with randomly distributed 

particles between adjacent pads. 
 
Fig. 4 presents a detailed schematic of the ACF 

compound brick between two neighboring pads. As shown, 
the brick is meshed by cubic elements (boxes), some of 
which contain a conductive particle. In the enhanced 
bridging model developed in this study, it is assumed that 
bridging takes place along all feasible linear paths between 
neighboring pads provided that the path comprises a 
continuous chain of conductive particles (as shown in Fig. 
4).  In this sense, the current model differs markedly from 
those presented in [6] and [7], respectively. For example, 
in the original model [6], bridging is assumed to take place 
only along the shortest path between the two pads, i.e. 
from ),( 11 ji  on the side wall of the left-hand pad 
to ),( 11 ji on the side wall of the right-hand pad. 
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Meanwhile, in the modified model [7], bridging is 
assumed to take place along all of the feasible linear paths 
between neighboring pads, irrespective of the fact that 
some of these paths do not actually comprise a continuous 

chain of conductive particles. In constructing the current 
bridging model, each bridging path is indexed by its start 
point (i.e. its left-hand end) and its end point (i.e. its 
right-hand end), i.e. ),( 11 ji  and ),( 22 ji , respectively.   

 

 

Fig. 4. (a) Finite connective model considering bridging in all directions; and (b) calculation of bridging probability using 
product operation. 

 
Clearly, the shortest dimensionless distance between 

),( 11 ji  and ),( 22 ji  is given by ( ) ( ) ( )221
2

21
2* jjiid −+−+ . 

As a result, the minimum number of particles (i.e. boxes) 

required to bridge the gap between neighboring pads 

is ( ) ( ) ( )221
2

21
2* jjiid −+−+ . These boxes form a continuous 

strip with a bridging probability of  
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where boxP  is the bridging probability of the box; stripP  

is the bridging probability of the strip between ( )11 , ji  

and ( )22 , ji . However, not all of the linear lines between 

the side walls of the two adjacent pads comprise a 

continuous chain of particles. In other words, some of 

these lines have an insulating property. The insulation 

probability of a bridging strip is given by 
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Therefore, the insulation probability of the bridging 
brick is expressed as 
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where∏ denotes a chain of product operations. 

As a result, the bridging probability of a brick 
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(containing ( )2** lh ×  strips) is given by. 
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In Eqs. (10) and (11), stripP  and C
stripP  are 

complementary events, and therefore stripP + C
stripP =1.  

Similarly, brickP  and C
brickP  can be expressed as 

brickP + C
brickP =1. 

The probability of each box containing a particle is 

given by 2μ . Therefore, the maximum probability of 

bridging along the path between ),( 11 ji  and ),( 22 ji  

is ( ) ( ) ( )221
2

21
2

2
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μ . Consequently, the 

corresponding insulating probability 

is ( ) ( ) ( )221
2
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2*

21 jjiid −+−+− μ . If the brick is considered to 

be 100% insulating, then clearly it must be insulating 

along all of the feasible linear paths between the side walls 

of the two pads. The insulating probability between 

neighboring pads can therefore be derived as 
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   The bridging probability in all directions in the 

brick is given by insulatingP−1 , i.e. 
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where 1i , 1j , 2i  and 2j  are coordinate indices 

referencing the individual cells on the side walls of the 

pads (see Fig. 4). 

Substituting π/6 fv  into 2μ , Eq. (15) can be 

expressed as 
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This equation can then be processed using a numerical 
method to calculate the bridging probability for any given 
values of *** ,, lhd and fv . Significantly, compared to 
the modified box model given in Eq. (2), Eq. (16) is more 
computationally straightforward and thus there is no need 
to exclude any of its terms in order to improve the 
computational efficiency. 

 
 
3. Failure analysis and V-shaped curve  
   method 
 
3.1 Combining opening and bridging effects in  
   analyzing ACF package failure 
 
ACF flip chip packages may fail as a result of either 

opening or bridging. As a result, the overall failure 
probability is defined as 

 

bridgingopeningbridgingopeningbridgingopening PPPP IU −+= ,(17) 

 
where bridgingopeningP U  is the probability of opening or 
bridging; Popening is the probability of opening; Pbridging is 
the probability of bridging; and bridgingopeningP I  is the 
probability of both opening and bridging. 

If opening and bridging are regarded as independent 
events, the overall failure probability, bridgingopeningP ∩ , can 
be expressed as follows: 

bridgingopeningbridgingopening PPP ⋅=I       (18) 

Substituting Eq. (18) into Eq. (17), the failure 
probability of the IC / substrate assembly can be 
formulated as 

 
bridgingopeningbridgingopeningbridgingopeningfailure PPPPPP ⋅−+== U

 .

(19) 

 
3.2 Failure probability under assumption that  
   volume fraction remains constant following  
   compression stage of packaging process  
   ( fbo vvv == ) 
 
Substituting Eq. (7) (i.e. the Poisson function for the 

opening probability) and Eq. (16) (i.e. the enhanced 
bridging model) into Eq. (19) yields the following: 
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When plotted as a function of the volume fraction (vf), 

Eq. (20) has the form of a V-shaped curve (see Fig. 2). The 
tip of this curve indicates both the lowest failure 
probability of the IC / substrate assembly and the 
corresponding volume fraction. The minimum failure 
probability can be found by differentiating Eq. (20) with 
respect to the volume fraction, i.e. 

 
( )[ ]

0
Pd

=
f

ffailure

dv
v               (21) 

Equation (21) can be solved using numerical methods. 
The corresponding value of fv  gives the optimal volume 
fraction, i.e. the volume fraction which minimizes the 
overall failure probability. 

 
 
4. Results and discussion 
 
4.1 Comparison between box, modified box and  
   present bridging models 
 
As discussed in the Introduction section, the original 

box model presented by Mannan et al. [6] considers 
bridging only along the shortest linear path between 
neighboring pads and thus yields underestimated solutions 
for the bridging probability. Conversely, the modified box 
model presented by Lin et al. [7] uses a summation 
technique to calculate the probabilities of bridging along 
all of possible conductive paths, their results over-estimate 
the failure probability. The new approach in this paper is 
the enhanced box model considering all possible linear 
paths which connecting the grid nodes (i1, j1)/ (i2, j2) of the 
left/ right sides. An approximate formulation for closing to 
the real failure probability can be analytically expressed by 
an easy formula (see Eq. 16). The enhanced bridging 
model can especially simply the multifarious 
considerations and enhance the computational 
performances under the overall failure analysis. Although 
the estimation method of the enhanced bridging model is 

better than the box and modified box models, but the 
present model isn’t still a faithful computational model.  
An accuracy calculation must consider all possible 
bridging paths (including curviform, ambagious, and direct 
paths), and it will be a great deal work impossibly. 
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Fig. 5. V-shaped curves obtained using current bridging 
model, original box model [6] and modified box model 

[7]. 
 
As shown in Fig. 5, the bridging probability 

calculated using the current model is indeed greater than 
that predicted by the original box model, but smaller than 
that estimated by the modified box model. This finding 
suggests that in practical applications, when defining the 
V-shaped curve to identify the optimal volume fraction of 
the ACF compound, the enhanced bridging model 
presented in this study should be used to avoid over- or 
under-estimating the bridging failure probability.  
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4.2 Application of V-shaped curve method  
 
In evaluating the overall failure probability of the 

ACF package, this study uses the Poisson function to 
estimate the opening failure probability and the enhanced 
bridging model to estimate the shorting failure probability. 
Previous studies have already confirmed the accuracy of 
the Poisson function in modeling the open circuit. 
Meanwhile, the enhanced bridging model proposed in this 
study calculates the bridging failure probability by 
considering all of the possible linear paths between 
adjacent pads. Consequently, the bridging estimates are 
more logical than those generated by the original box 
model [6] or the modified box model [7].  

As discussed in the Introduction section, the V-shaped 
curve plots the failure probability as a function of the 
volume fraction of the conductive particles. The tip of the 
V-shaped curve indicates the lowest failure probability and 
the optimal volume fraction. Fig. 2 illustrate the effects of 
the IC / substrate geometry on the opening and bridging 
failure probabilities. As shown, for a constant volume 
fraction, the opening failure probability decreases with 
increasing *l . Meanwhile, the bridging failure probability 
reduces with decreasing *h or increasing *d . In other 
words, the major factors governing the yield of the flip 
chip package are the dimensionless geometry parameters 
of the IC / substrate assembly, i.e. *l , *h  and *d , and 
the volume fraction, fv , of the ACF compound.  

 
4.3 Limitations of proposed bridging model 
 
Although the enhanced bridging model presented in 

this study yields more logical bridging failure estimates 
than either the original bridging model or the modified 
model, it is not without its limitations. For example, the 
model only considers bridging between two adjacent pads, 
whereas in practice bridging may occur between any two 
contiguous pads within the entire IC / substrate assembly. 
In other words, the current model takes a local rather than 
global view of the bridging phenomenon [10]. It is worth 
to be addressed the failure probability of ACF packages is 
sensitive to the pads array dimension (nxn) and the 
geometry parameters l, d, h, r, etc. The overall global 
failure probability can be computed by using the 
Inclusion–Exclusion Principal with the numerical 
computation.  The pads array dimension effects 
considering the different geometry parameters will be 
another important issue in the future. Furthermore, in 
reality, the particles in the ACF compound are dispersed in 
accordance with a stochastic distribution and the final 
positions of the particles will change following the 
compression process. However, the effects of this physical 
change on the opening and bridging probabilities are not 
reflected within the current model.  Finally, the actual 
bridging phenomenon is more complex than that modeled 
in the current study. For example, the proposed model only 
considers the linear connections between adjacent pads, 
whereas in practice, bridging may actually occur along 

curvilinear or winding paths. In addition, many other 
factors will affect the yield of the ACF packaging like the 
excessive contact stress results in the rupture of the 
particles, the environmental effects of the 
temperature/moisture, the particles redistribution of the 
bonding processing, the pads number effect, the stochastic 
errors of the particles distribution [13], the asymmetric 
pad-height on the IC/ Substrate [14], the deformation 
effect under thermal cycling condition [15], etc.  

 
 
5. Conclusions 
 
This study has employed probability theory to develop 

an enhanced model for estimating the probability of 
bridging failures in ACF assemblies. Applying the Poisson 
function to predict the opening failure and the proposed 
model to estimate the bridging failure, V-shaped curves 
have been constructed to illustrate the correlation between 
the failure probability of the IC/ Substrate and the volume 
fraction of the conductive particles within the ACF 
compound. The V-shaped curve provides a straightforward 
means of estimating the package failure probability given 
a certain volume fraction and for determining the optimal 
volume fraction, i.e. the volume fraction which minimizes 
the risk of package failure. The computational results have 
shown that the proposed bridging model provides more 
logical estimates of the minimum failure probability and 
the corresponding optimal volume fraction than those 
generated using the original box model [6] or the modified 
box model [7]. 

The major contributions of the current study can be 
summarized as follows: 

(I). An improvement in the accuracy of the estimated 
bridging probability as a result of explicitly recognizing 
the insulating characteristics of the ACF block between 
neighboring pads. 

(II). The application of probability theory to estimate 
opening and bridging failures in developing a reliable 
model for predicting the overall failure probability of IC / 
substrate assemblies. 

(III). An improvement in the computational efficiency 
of the bridging failure model relative to that of the 
modified box model presented in [7].  
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